Herd Immunity and the Benefits of Vaccination

Using Measles as an Example
Mark S. Roberts, MD, MPP
Professor and Chair, Department of Health Policy and Management
Professor of Medicine, Industrial Engineering, Business
Administration and Clinical and Translational Science
Director, Public Health Dynamics Laboratory

I have no conflicts of interest

Outline of Talk

- Brief review of measles
- Brief review of vaccines
- The concept of community or herd immunity
- The Public Health Dynamics Laboratory (PHDL)
- Modeling infectious diseases
- The FRED Measles application
- FRED Measles - Texas version

PITT
 iiiii PUBLIC HEALTH

Measles

- Highly contagious viral disease that causes:
- High fever
- Cough
- Runny nose
- Watery eyes
- Rash
- Potential Complications
- Viral pneumonia (1:20)
- Encephalitis (1:1000)
- Death (1-2:1000)

Measles infectious characteristics

- The Virus spreads through the air by coughing and sneezing of an infected person
- The virus can remain infectious for over 2 hours in the air
- It may take 10-14 days to develop symptoms
- A person can be infectious before they have symptoms
- Typically from 4 days before the rash appears to 4 days after the rash resolves

itii PITT
 iifii PUBLIC HEALTH

Treatment

- There is no specific treatment for measles
- If complications (encephalitis, pneumonia) develop, therapy is supportive
- There may be long term sequalae
- There may be significant acute disability

Outcomes

- Worldwide, there are still many deaths from measles, but mortality is declining

- Last death in the US was in 2015 - the first in a decade - and many initial cases in US outbreaks are found to originate in other countries

No treatment but excellent prevention

- 1963 - Enders and colleagues created the first measles vaccine (live attenuated)
- Followed in 1968 a further modified version (Edmonston-Enders vaccine)
- The measles vaccine is a live attenuated vaccine

Types of Vaccines

- attenuated (live) vaccines
- The virus is still "viable" but has been altered to be less virulent (MMR, chickenpox, smallpox)
- inactivated vaccines
- Vaccine made from virus particles that are not complete or have been damaged (polio, rabies)
- toxoid vaccines
- Vaccine made from a pathogen's toxin (tetanus, diphtheria)

Types of Vaccines (cont)

- subunit vaccines
- Uses only a part of the virus to develop the immune response (Hep B, HPV)
- conjugate vaccine
- Attaching a strong antigen to a poor antigen to improve immune response (pneumococcal, meningococcal)

Prevention - the measles vaccine

- Current CDC recommendation is to have children received either:
- MMR vaccine (Measles, Mumps, Rubella)
- MMRV vaccine (Measles, Mumps, Rubella, Varicella)
- With respect to measles:
- 1-dose is $\sim 93 \%$ effective at preventing disease
- 2-doses are ${ }^{\sim} 97 \%$ effective at preventing disease

ifiii PUBLIC HEALTH

- For measles in the US, the vaccine had essentially eliminated the disease

Project Tycho

PITT
 ififi PUBLIC HEALTH

- Overall, between 1988 and 2012 vaccines have prevented 100,000,000 cases of infectious disease

Who is protected - herd immunity

- Some ask:
"Why should I have to vaccinate my child? If I am willing to accept the risk for my child, who does that hurt?"
- Because the ability to stop epidemics requires a high level of immunity in the population- and epidemics don't only effect those who fail to vaccinate

PITT
 iifii PUBLIC HEALTH

Epidemics - how they happen

Epidemics - impact of immunity

$5 \rightarrow 5$ infected

PITT
 ifiii PUBLIC HEALTH

There are "innocent bystanders"

The person cannot be vaccinated because of a specific medical condition (certain cancers, certain immunological diseases) usually just a few percent of people

The person was vaccinated, but vaccine did not produce sufficient immunity ($\sim 3-$ 5% of people who are vaccinated against measles)

Infectious diseases transmission

- Different diseases have different ability to transmit to others
- The ability is summarized in a characteristic called the "Basic Reproductive Number" or R_{0}
- Represents (on average) the number of new cases of disease from each individual, in an unprotected population
$-R_{0}<1$; the infection will die out
$-R_{0}>1$; the infection will spread

Herd (community) immunity

- "...is a form of indirect protection from infectious disease that occurs when a large percentage of a population has become immune to an infection, thereby providing a measure of protection for individuals who are not immune."
-Wikipedia
- It makes it more likely that an infected individual will contact immune individuals during their infectious period

Relative transmission

- Measles is a remarkably effective virus in an unprotected population
- It is 6 times more infectious than influenza
- Herd immunity

Disease	R_{0}
Measles	$12-18$
Chicken Pox	$10-12$
Polio	$5-7$
Mumps	$4-7$
HIV/AIDS	$2-5$
Influenza	$2-3$
Ebola	$1.5-2.5$

effectively changes the R_{0} of the infection

Public Health Dynamics Laboratory

The mission of the Public Health Dynamics Laboratory is to:

- Develop interdisciplinary approaches using computational models to advance the theory and practice of public health.
- Contribute to "Systems Thinking" in the training of the next generation of Public Health professionals.

Models of Infectious Disease Agent Study (MIDAS)
National Center of Excellence
PI: Burke
Sponsor: NIGMS/NIH

Vaccine Modeling Initiative
PI Burke
Sponsor: Bill and Melinda Gates Foundation
Public Health Adaptive Systems Studies
PI: Potter
Sponsor: CDC
Public Health International Modeling Fellows Program
PI: Grefenstette/Burke
Sponsor: Benter Foundation

www.vaccinemodeling.org
www.phasys.pitt.edu

Benter
 Foundation

Data Across Sectors for Health (DASH)
PI: Roberts (Hacker)
Sponsor: Roberts Wood Johnson Foundation
Robert Wood Johnson Foundation Collaborators:

JOHNS HOPKINS
MEDICINE

Framework for Reconstructing Epidemiologic Dynamics

Census-matched synthetic population

25
U.S. Population (112,595,578
households with 289,390,247 people)

Location and size of each workplace

Household size, ethnicity, ages, income

- Model of the introduction of avian influenza into a population with little or no immunity

nature

FRED Measles

- Prompted by the publicity of the resurgence of measles in the public media (after the Disneyland outbreak of 2014-15)
- Calibrated FRED (built for influenza) to the disease characteristics for Measles
- More infectious
- Infection spreads by close contact
- Created an application that can describe the expected number of cases when an infected person is placed in a county

Initial FRED Measles

http://fred.publichealth.pitt.edu/

- Important assumptions:
- All schools in county have the same vaccination rate
- We compare 80% vaccination rates among those <16 to 95% vaccination among those same children
- Randomly insert a new case into the county
- Run the model multiple times, show the median number of cases

Impact -Use as a policy tool

FiveThirtyEight
Politics Sports Science \& Health Economics Culture

Facts Alone Won't Convince People
To Vaccinate Their Kids
It took an outbreak, a mathematical model and a new law to get
immunization rates up in California.

Eyled under Public Health
"The FRED Measles model can be used to visualize infectious disease dynamics in any county, so Pan could show his fellow senators exactly how an outbreak would play out in their own backyards."

Impact - use as a policy tool

Dr. Richard Pan, a pediatrician and California state legislator, used FRED measles to explain herd immunity to colleagues in the California Legislature
"... Sen. Marty Block, a San Diego Democrat, said he was convinced to vote "yes" after Pan showed him a computer modeling program [from the University of Pittsburgh] that simulates how quickly a measles outbreak could spread depending on a community's vaccination rate."

Dr. Richard Pan at California Department of
Public Health
Vaccination rate, pre SB 277: 92.9\%
Vaccination rate, post SB 277: 95.6\%
($\sim 168,000$ more children vaccinated)

Caveats related to FRED Measles

- Original measles simulation assumes either 80\% vaccination or 95\% vaccination
- Assumes a uniform vaccination rate within each county (all schools in the county were considered the same)
- This is obviously not correct

The scenario would never happen

Measles in Los Angeles County, CA
Coverage $=80 \%$
Day 222

Red Dot $=$ Infectious Case

- People would respond to what they saw
- Keep children home from school
- Vaccinate their children
- Change group behaviors

Location and size of each workplace

When a school (or workplace) develops a lot of cases of measles people mat change their behavior

Improvements - actual vaccination

FRED Measles Texas

- Obtained data from the Texas Department of State Health Services on vaccination rates by school for private schools and by district for public schools.

Texas has variable vaccination rates

Measles Vaccination

Schools less than 95\%

FRED Measles Texas: definitions

- Refusers: when vaccination rates are below 95\%, those children are assumed to have declined to be vaccinated
- Innocent bystanders: There is a small percentage of children who:
- Cannot be vaccinated for health reasons
- Receive the vaccination but it does not provide immunity ($\sim 3 \%$ of those vaccinated)
- Metropolitan Statistical Area (MSA) - high population areas that are typically large cities

FRED Measles Texas - Assumptions

- Where we had district data, we assumed all schools in the district had the same vaccination rate
- For schools with over 95\% vaccination, we assumed that there were no refusers, only innocent bystanders

FRED Measles Texas: scenarios

- Non-targeted: a child infected with measles is randomly placed in any school in the county or Metropolitan Statistical Area (large city)
- Targeted: a child infected with measles is specifically placed into a school that has refusers (has a vaccination rate less than 95\%)

FRED Measles Texas: Display

Median predicted cases under current vaccine conditions and the area experiences a non-targeted measles introduction

Median predicted cases under current vaccine conditions and the area experiences a non-targeted measles introduction with a 10% lower vaccination rate

Median predicted cases under current vaccine conditions and the area experiences a targeted measles introduction (a school <95\%)

> Graph of the number of cases (both in refusers and innocent bystanders) that would occur in a targeted measles introduction under current vaccine conditions

Web tool:

The website if open to anyone

Summary of expected cases

Conclusions:

- Even under current vaccination conditions, there is a reasonable risk that the introduction of a case of measles into many Texas counties and cities would result in large numbers of measles cases
- Families who refuse vaccination put others at risk as well, in many simulations the number of innocent bystander infections was nearly equal to the number of infections among refusers

Conclusions

- Herd (community) Immunity protects not only vaccinated individuals, but prevents the development of epidemics in situations where they might otherwise occur

Questions?

